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Abstract
We numerically calculate the configurational entropy Sconf of a binary mixture
of hard spheres, by using a perturbed Hamiltonian method trapping the system
inside a given state, which requires fewer assumptions than the previous
methods (Speedy 1998 Mol. Phys. 95 169). We find that Sconf is a decreasing
function of the packing fraction ϕ and extrapolates to zero at the Kauzmann
packing fraction ϕK � 0.62, suggesting the possibility of an ideal glass
transition for the hard-sphere system. Finally, the Adam–Gibbs relation is found
to hold.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The idea that the glass transition is driven by a decreasing of the number of accessible states
upon lowering the temperature (or raising the density) is quite old [1–3]. In this picture, if
crystallization is avoided, an ideal glass transition is expected to happen at the point where
the configurational entropy Sconf (the logarithm of the number of states) vanishes. When
the liquid enters into the supercooled region, the dynamics becomes slower and slower and
the particles get trapped for an increasingly longer time inside the ‘cages’ made by their
neighbours: the dynamics of the system can be successfully described as a ‘fast’ motion of the
representative point in the 3N configuration space inside metastable states, and a ‘slow’ motion
corresponding to jumps among states. On entering further into the supercooled region, the
number of accessible metastable states decreases and the extrapolation to zero of Sconf defines
the ideal glass transition. In experiments (or numerical simulations) the region close to the ideal
glass transition is unreachable, due to the ‘apparent’ arrest of the system at the so-called glass-
transition temperature (or density) when relaxation times become longer than experimental
timescale. The above scenario has been shown to be valid for many interacting systems, based
on a smooth pair-potential (such as Lennard-Jones liquids), for which the potential energy
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landscape (PEL) approach [4–13] and the replica method [14, 15] have allowed one to give
numerical estimations of Sconf and of the ideal glass transition.

The overall picture is still not well established for hard spheres (HSs), for which the
existence of a glass transition is still an open question [16–20]. A particularly important role
seems to be played by the dimensionality of the system. In particular, in d = 2 dimensions there
are numerical [20, 21] and theoretical [22, 23] evidences of the absence of a thermodynamic
glass transition, while the opposite seems to be true for d = 3 [18, 24]. Moreover, the step-wise
form of the interparticle potential does not allow a PEL analysis, and different approaches have
to be taken into consideration in order to calculate the configurational entropy Sconf. In the past,
attempts to estimate Sconf have been performed based on different evaluations of the entropy in
each single state [18, 25, 26]. Recently the replica method has been extended to the HS case
for one-component systems [23, 24].

In this paper we follow an approach, based on the Frenkel–Ladd method [27] and recently
introduced in the study of Lennard-Jones systems [28] and attractive colloids [29, 30], to
numerically estimate Sconf for binary hard spheres. As in previous studies, the calculation is
reduced to that of the vibrational entropy Svib, using the fact that the total entropy S can be
decomposed into the sum of a configurational contribution Sconf and a vibrational one Svib:

S = Sconf + Svib. (1)

This expression is consistent with the idea that, at high enough density, there are two well-
separated timescales: a fast one, related to the motion inside a local state (the rattling in the
cage), and a slow one associated to the exploration of different states.

The total entropy S is obtained by thermodynamic integration, starting from the ideal gas
state. The quantity Svib is calculated using a perturbed Hamiltonian, adding to the original
Hamiltonian an harmonic potential around a given reference configuration. Calculating the
mean square displacement from the reference configuration and making an integration over
the strength of the perturbation, it is possible to estimate the vibrational entropy [29]. The
difference S − Svib provides an estimate of the configurational entropy Sconf as a function of
packing fraction ϕ (or density ρ).

The main findings of the present work are the following.

(i) Sconf is a decreasing function of the packing fraction ϕ, and a suitable extrapolation to
zero provides an estimate of the ideal phase transition point (Kauzmann packing fraction)
ϕK � 0.62.

(ii) The diffusivity D and configurational entropy Sconf are related through the Adam–Gibbs
relation, in agreement with previous claims [18].

2. The model

The system studied is a binary 50–50 mixture of hard spheres, A and B, with diameter ratio
σB/σA = 1.2. The collision diameters are σAA = σA, σBB = σB and σAB = (σA + σB)/2.
The particles (N = 256) are enclosed in a cubic box with periodic boundary conditions. We
use the following units: σB for length and mA = mB = 1 for mass. Moreover we choose
kB = 1 and h̄ = 1. The density is measured by the packing fraction ϕ that is related to the
number density ρ = N/V by ϕ = ρπ(σ 3

A + σ 3
B)/12. We analysed systems in the range

ϕ = 0.425–0.580. Hard-sphere systems depend only trivially on temperature, which sets an
overall scale for the dynamics; consequently we perform all our simulations at T = 1. We
performed standard event-driven molecular dynamics [31] and we stored several equilibrated
configurations at different density.
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Figure 1. Mean square displacements (MSDs) of species A (top) and B (bottom). Both MSDs has
been normalized by the value of the diameter squared. The dashed lines represent the cage size
squared, δr2.

3. Diffusivity

The diffusion coefficients D of the two species have been extracted from the long-time limit of
the mean square displacements (MSDs) 〈r 2(t)〉 = N−1〈[r(t) − r(0)]2〉 (r is the 3N-vector of
the coordinates):

lim
t→∞

〈r 2(t)〉
t

� 6D. (2)

To improve the statistical significance of the data, an average over ten independent runs was
performed. In figure 1 the mean squared displacements for the slowest cases, i.e. φ > 0.56,
are presented for both species. It is clear that on increasing the density the MSDs develop the
typical two-step relaxation pattern. The first part of the MSD is purely ballistic, while, at a later
stage, it reaches the diffusive regime, described by equation (2). Between these two regimes
a plateau starts to develop. This is a clear indication of a caging effect. Each particle starts to
feel the crowding of its neighbours and it is trapped in a cage for longer and longer time on
increasing the density. The height of the plateau is the typical ‘cage diameter squared’, δr 2.
For both species we find δr 2 = 3 × 10−2σ 2

α for α = A or B, represented by a dashed line
in figure 1. This is clear evidence that the two species have the same caging effect. We shall
return to the value of δr 2 later.

In figure 2 the diffusivities D of A and B particles are plotted as a function of the packing
fraction ϕ. Dashed lines in the figure are power-law fits D = C(ϕc − ϕ)γ of the high-packing-
fraction data (ϕ � 0.53), as predicted by mode-coupling theory. The fitted parameters are
ϕc = 0.583, γ = 2.27, C = 9.50 for A particles and ϕc = 0.583, γ = 2.47, C = 11.66 for B
particles. We note that both diffusivities give rise to the same mode-coupling packing fraction
ϕc, in agreement with the prediction of the theory [32] and with previous simulations of the
same model [33].
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Figure 2. Diffusivity for A and B particles as a function of packing fraction ϕ. The lines are power-
law fits for ϕ � 0.53, C (ϕc − ϕ)γ , with ϕc = 0.583, γ = 2.27, C = 9.50 for A particles and
ϕc = 0.583, γ = 2.47, C = 11.66 for B particles.

4. Configurational entropy

We now turn to the calculation of configurational entropy. The method we follow to estimate
Sconf requires the computation of the total entropy S and vibrational entropy Svib. The total
entropy S is calculated via a thermodynamic integration from an ideal gas and can be expressed
as

S(ρ) = Sid(ρ) + Sex(ρ), (3)

where Sid is the entropy of the ideal gas and Sex is the excess entropy with respect to the ideal
gas. For a binary mixture, the ideal gas entropy is

Sid(ρ)

N
= 5

2
− ln ρ − 3 ln λ + ln 2, (4)

where λ = (2πβh̄2/m)
1
2 is the de Broglie wavelength (h̄ is Planck’s constant and it has been

set to unitary value), and the term ln 2 takes into account the mixing contribution. The term Sex

can be expressed in the following form:

Sex(ρ) = − N

T

∫ ρ

0

dρ

ρ2
Pex, (5)

with Pex the excess pressure. We extracted Pex from the zero-density limit up to the densities
of interest, performing numerical simulations and fitting the results of the pressure with a
high-order polynomial in ρ. In figure 3 we show the numerically calculated excess entropy
Sex (symbols) together with the analytic estimate provided by the Carnahan–Starling (CS)
equation of state, extended to hard-sphere mixtures [34, 35]3. We note that at high densities
the CS equation of state overestimates the entropy by about 7%. This discrepancy, however,
is not sufficiently significant to affect the resulting Sconf values, in particular close to the glass
transition.

3 The analytical CS expression for Sex is given by equation 9 in [35] omitting the last term ln Z , as in our case the
excess entropy is defined with respect to the ideal gas at the same density instead of at the same pressure as in [35].

4



J. Phys.: Condens. Matter 19 (2007) 256207 L Angelani and G Foffi

Figure 3. Excess entropy Sex for the mixture of hard spheres as obtained from our simulations
(symbols) compared with the analytical Carnahan–Starling expression (line) [35] (see footnote 3).

The method we use for the calculation of Svib is based on the investigation of a perturbed
system

β H ′ = β H + αN(r − r0)
2, (6)

where H is the unperturbed hard-sphere Hamiltonian, α is the strength of the perturbation, r0

specifies the particle coordinates of a reference configuration and (r − r0)
2 ≡ N−1

∑N
i=1(	ri −

	r0,i )
2. The reference configuration r0 is chosen from equilibrium configurations at the

considered density (randomly extracted from the stored configurations obtained during
molecular dynamics simulations). With this choice one is sure that the estimated vibrational
entropy (see the formula below) pertains to the correct state at the studied density. The
vibrational entropy can be obtained from the formula (see [29] for details)

Svib

N
=

∫ α∞

α0

dα′ 〈(r − r0)
2〉α′ − 3

2
ln

(
α∞λ2

π

)
+ 3

2
, (7)

where α0,∞ are the lower/upper limit of integration, and 〈· · ·〉α′ is the canonical average for a
given α′. The choice of α0 deserves a few comments. If the system were confined to move
inside a given local free-energy minimum, for a correct estimation of Svib one would take the
lower limit α0 = 0 in the integral in equation (7). As the system, at a sufficiently low value
of α, begins to sample different states (the harmonic force due to the perturbation is no longer
able to constrain the system inside one state), α0 has to be chosen in such a way that the system
has not yet left the state: the underlying idea is that equation (7) gives a correct estimation of
Svib until the system remains trapped in the state. An appropriate choice in our case seems
to be α

(1)

0 = 22.5 for all the densities, as, close to this point, one observes a crossover for all
the investigated densities (more pronounced for low-density data). In figure 4, the quantity
〈(r − r0)

2〉α is reported as a function of α. An arrow indicates the chosen value α0 = α
(1)

0 ,
below which one observes the crossover associated to the exploration of different states.

It is worth noting that different choices of α0 are in principle possible, giving rise
to different estimations of the vibrational entropy term. However, even though a kind of
arbitrariness is present in the method, one can argue that a reasonable choice should be for
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Figure 4. The quantity 〈(r − r0)
2〉α plotted versus α in logarithmic scale for different packing

fractions ϕ. Vertical lines are the values α
(1)
0 = 22.5 and α

(2)
0 = 24.5 used as the α0-value in the

integral in equation (7) for the calculation of Svib.

values above α
(1)

0 (close to the crossover corresponding to the exploration of different states)
and below an upper value α

(2)
0 at which one is sure that the system is still confined in a single

state. The latter value can be estimated by requiring that the MSD 〈(r − r0)
2〉 is always close

to/below the cage diameter squared δr 2 � 3 × 10−2σ 2
α (with α = A or B) (this has been

estimated from the plateau of the mean square displacement; see figure 1).
The chosen value in our case is α

(2)

0 = 24.5 (indicated by an arrow in figure 4). We then
repeated the same calculation of Svib using equation (7) with the lower bound in the integral
α0 = α

(2)
0 . In this way we obtain a lower and upper bound for the quantity of interest Svib, by

using respectively α
(1)

0 or α
(2)

0 in the expression for Svib in equation (7).
Figure 5 shows Sconf as a function of ϕ. The configurational entropy Sconf is calculated

using equation (1), where the two entropies S and Svib are obtained from equations (3) and (7)
respectively. Due to the fact that the correct integral for the estimation of Svib should be
done from α0 = 0, but with the system always inside a given state, we have added to the
expression in equation (7) the term α0〈(r − r0)

2〉α0 , corresponding to assume a constant value
of 〈(r− r0)

2〉 below α0 and using a zero value for the lower limit of the integral in equation (7).
Figure 5 shows the two estimates of Sconf, corresponding to the two different values of α0:
α

(1)

0 = 22.5 (open symbols) and α
(2)

0 = 24.5 (full symbols). One observes that the discrepancy
between the two estimations decreases by increasing the packing fraction, suggesting that,
at high density, the method used to calculate Sconf is less affected by the choice of the free
parameters entering in its evaluation. This is probably due to the fact that on increasing the
density the system tends to be more trapped in a local free-energy minimum. Indeed, it is only
at high density that the method is expected to work better, due to the better definition of two
timescales corresponding to local-fast and global-slow dynamics (see figure 1). At low density,
instead, the two are less separated and this corresponds to a difficulty in the extrapolation for
α0 → 0 of the quantity reported in figure 4. The low-density data show a clearer crossover
on lowering α, and then a worse definition of state in this limit. As we are interested in the
high-packing-fraction extrapolation, this fact does not affect our prediction of the Kauzmann
density value.
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Figure 5. Configurational entropy Sconf as function of packing fraction ϕ. Open symbols are data
using α

(1)
0 = 22.5, full symbols using α

(2)
0 = 24.5 (see text). Dashed and dot–dashed lines are from

Speedy [18] for binary and monatomic hard spheres respectively. The thin full line is the analytical
computation of Parisi and Zamponi for monatomic hard spheres [24]. Thick lines are polynomial
extrapolations of our data in the high-packing-fraction region, giving rise to the same Kauzmann
packing fraction estimation for which Sconf(ϕK) = 0: ϕK � 0.62.

Also reported in the figure are the curves obtained by Speedy [18] using a different method
(assuming a particular form of the vibrational entropy, a Gaussian distribution of states and
involving some free parameters) for the estimation of Sconf, for monatomic (dot–dashed line)
and binary (dashed line) hard spheres (with the same diameter ratio 1.2 and composition 50:50
as in our case). It is worth noting that our method improves on Speedy’s one, as, even though
requiring some accuracy in the choice of the α0 parameter, it has the advantage to be less
affected by the presence of many free parameters and particular assumptions. We note that the
data of Speedy for the binary case do agree very well with our data with α0 = α

(2)

0 , suggesting
the possibility that the choice of α0 = α

(2)
0 is more accurate for the estimation of Svib and so

of Sconf. As a comparison, in figure 5 is also reported an analytic estimation of Sconf recently
provided by Parisi and Zamponi [24] for monatomic hard spheres. From the ϕ-dependence of
the configurational entropy one can determine the packing fraction at which Sconf extrapolates
to zero, corresponding to the ideal phase transition point (Kauzmann packing fraction ϕK)
Sconf(ϕK) = 0. Using a polynomial extrapolation4 for the two sets of data (corresponding to the
different α0 values) we obtain an estimated Kauzmann packing fraction value ϕK � 0.62 (see
figure 5). It is worth noting that, even though the two curves are quite different, the estimated
value of ϕK is the same, again suggesting the robustness of the method in the high-density
region and then in the estimation of the Kauzmann packing fraction.

5. Adam–Gibbs relation

In this section we explore the validity of the Adam–Gibbs (AG) relation, linking dynamic
quantities, like diffusivity, to Sconf. In figure 6 we report the diffusivities D for A and B particles

4 We use a polynomial function of the form A (ϕK − ϕ) − B(ϕK − ϕ)2 to fit the data with ϕ > 0.5. Adding more
polynomial orders does not significantly affect the extrapolated Kauzmann packing fraction value.
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Figure 6. The Adam–Gibbs relation D = D∞ exp[−N�/(T Sconf)] (T = 1) for the two species A
and B: D∞ = 3.66, � = 9.8 for A particles; D∞ = 4.59, � = 10.8 for B particles. The data of
Sconf are obtained with α0 = α

(2)
0 .

versus the quantity (T Sconf)
−1, with Sconf obtained for the value α0 = α

(2)
0 . We find that the

Adam–Gibbs relation

D = D∞e−N�/T Sconf (8)

is verified (lines in the figure), with D∞ = 3.66, � = 9.8 for A particles and D∞ = 4.59,
� = 10.8 for B particles. A similar behaviour is obtained using Sconf calculated with α0 = α

(1)

0
(not shown in the figure), with the values D∞ = 24.5, � = 9.5 for A particles and D∞ = 37.5,
� = 10.5 for B particles, suggesting that, in this range of diffusivity values, the AG expression
is not able to discriminate between the two different estimations of Sconf.

6. Conclusions

In conclusion, we have calculated Sconf for a binary hard-sphere mixture, by numerically
estimating the total entropy S (via thermodynamic integration from an ideal gas) and the
vibrational entropy Svib using a numerical procedure based on the Frenkel–Ladd method and
recently applied in the analysis of Lennard-Jones systems and attractive colloids: the system
is constrained inside a given ‘state’ through an harmonic perturbed term in the Hamiltonian.
We found, in agreement with analytical and simulation results in the literature, that Sconf is a
decreasing function of the packing fraction ϕ, suggesting the possibility of a vanishing of Sconf

around the Kauzmann point ϕK = 0.62. Moreover, by studying the relationship between Sconf

and the diffusion constant D, the Adam–Gibbs relation is found to hold reasonably well for the
system analysed.
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